ComparisonReport.metrics.log_loss#
- ComparisonReport.metrics.log_loss(*, data_source='test', X=None, y=None)[source]#
Compute the log loss.
- Parameters:
- data_source{“test”, “train”}, default=”test”
The data source to use.
“test” : use the test set provided when creating the report.
“train” : use the train set provided when creating the report.
“X_y” : use the provided
X
andy
to compute the metric.
- Xarray-like of shape (n_samples, n_features), default=None
New data on which to compute the metric. By default, we use the validation set provided when creating the report.
- yarray-like of shape (n_samples,), default=None
New target on which to compute the metric. By default, we use the target provided when creating the report.
- Returns:
- pd.DataFrame
The log-loss.
Examples
>>> from sklearn.datasets import load_breast_cancer >>> from sklearn.linear_model import LogisticRegression >>> from sklearn.model_selection import train_test_split >>> from skore import ComparisonReport, EstimatorReport >>> X, y = load_breast_cancer(return_X_y=True) >>> X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=42) >>> estimator_1 = LogisticRegression(max_iter=10000, random_state=42) >>> estimator_report_1 = EstimatorReport( ... estimator_1, ... X_train=X_train, ... y_train=y_train, ... X_test=X_test, ... y_test=y_test, ... ) >>> estimator_2 = LogisticRegression(max_iter=10000, random_state=43) >>> estimator_report_2 = EstimatorReport( ... estimator_2, ... X_train=X_train, ... y_train=y_train, ... X_test=X_test, ... y_test=y_test, ... ) >>> comparison_report = ComparisonReport( ... [estimator_report_1, estimator_report_2] ... ) >>> comparison_report.metrics.log_loss() Estimator LogisticRegression LogisticRegression Metric Log loss 0.082... 0.082...