EstimatorReport.metrics.rmse#
- EstimatorReport.metrics.rmse(*, data_source='test', X=None, y=None, multioutput='raw_values')[source]#
Compute the root mean squared error.
- Parameters:
- data_source{“test”, “train”, “X_y”}, default=”test”
The data source to use.
“test” : use the test set provided when creating the report.
“train” : use the train set provided when creating the report.
“X_y” : use the provided
X
andy
to compute the metric.
- Xarray-like of shape (n_samples, n_features), default=None
New data on which to compute the metric. By default, we use the validation set provided when creating the report.
- yarray-like of shape (n_samples,), default=None
New target on which to compute the metric. By default, we use the target provided when creating the report.
- multioutput{“raw_values”, “uniform_average”} or array-like of shape (n_outputs,), default=”raw_values”
Defines aggregating of multiple output values. Array-like value defines weights used to average errors. The other possible values are:
“raw_values”: Returns a full set of errors in case of multioutput input.
“uniform_average”: Errors of all outputs are averaged with uniform weight.
By default, no averaging is done.
- Returns:
- float or ndarray of shape (n_outputs,)
The root mean squared error.
Examples
>>> from sklearn.datasets import load_diabetes >>> from sklearn.linear_model import Ridge >>> from sklearn.model_selection import train_test_split >>> from skore import EstimatorReport >>> X_train, X_test, y_train, y_test = train_test_split( ... *load_diabetes(return_X_y=True), random_state=0 ... ) >>> regressor = Ridge() >>> report = EstimatorReport( ... regressor, ... X_train=X_train, ... y_train=y_train, ... X_test=X_test, ... y_test=y_test, ... ) >>> report.metrics.rmse() np.float64(56.5...)