CrossValidationReport.metrics.brier_score#
- CrossValidationReport.metrics.brier_score(*, data_source='test', aggregate=None)[source]#
Compute the Brier score.
- Parameters:
- data_source{“test”, “train”}, default=”test”
The data source to use.
“test” : use the test set provided when creating the report.
“train” : use the train set provided when creating the report.
- aggregate{“mean”, “std”} or list of such str, default=None
Function to aggregate the scores across the cross-validation splits.
- Returns:
- pd.DataFrame
The Brier score.
Examples
>>> from sklearn.datasets import load_breast_cancer >>> from sklearn.linear_model import LogisticRegression >>> from skore import CrossValidationReport >>> X, y = load_breast_cancer(return_X_y=True) >>> classifier = LogisticRegression(max_iter=10_000) >>> report = CrossValidationReport(classifier, X=X, y=y, cv_splitter=2) >>> report.metrics.brier_score() LogisticRegression Split #0 Split #1 Metric Brier score 0.04... 0.04...