CrossValidationReport.metrics.custom_metric#
- CrossValidationReport.metrics.custom_metric(metric_function, response_method, *, metric_name=None, data_source='test', aggregate=None, **kwargs)[source]#
Compute a custom metric.
It brings some flexibility to compute any desired metric. However, we need to follow some rules:
metric_function
should takey_true
andy_pred
as the first two positional arguments.response_method
corresponds to the estimator’s method to be invoked to get the predictions. It can be a string or a list of strings to defined in which order the methods should be invoked.
- Parameters:
- metric_functioncallable
The metric function to be computed. The expected signature is
metric_function(y_true, y_pred, **kwargs)
.- response_methodstr or list of str
The estimator’s method to be invoked to get the predictions. The possible values are:
predict
,predict_proba
,predict_log_proba
, anddecision_function
.- metric_namestr, default=None
The name of the metric. If not provided, it will be inferred from the metric function.
- data_source{“test”, “train”}, default=”test”
The data source to use.
“test” : use the test set provided when creating the report.
“train” : use the train set provided when creating the report.
- aggregate{“mean”, “std”} or list of such str, default=None
Function to aggregate the scores across the cross-validation splits.
- **kwargsdict
Any additional keyword arguments to be passed to the metric function.
- Returns:
- pd.DataFrame
The custom metric.
Examples
>>> from sklearn.datasets import load_diabetes >>> from sklearn.linear_model import Ridge >>> from sklearn.metrics import mean_absolute_error >>> from skore import CrossValidationReport >>> X, y = load_diabetes(return_X_y=True) >>> regressor = Ridge() >>> report = CrossValidationReport(regressor, X=X, y=y, cv_splitter=2) >>> report.metrics.custom_metric( ... metric_function=mean_absolute_error, ... response_method="predict", ... metric_name="MAE", ... ) Ridge Split #0 Split #1 Metric MAE 50.1... 52.6...