ComparisonReport.metrics.precision#
- ComparisonReport.metrics.precision(*, data_source='test', X=None, y=None, average=None, pos_label=None)[source]#
Compute the precision score.
- Parameters:
- data_source{“test”, “train”, “X_y”}, default=”test”
The data source to use.
“test” : use the test set provided when creating the report.
“train” : use the train set provided when creating the report.
“X_y” : use the provided
X
andy
to compute the metric.
- Xarray-like of shape (n_samples, n_features), default=None
New data on which to compute the metric. By default, we use the validation set provided when creating the report.
- yarray-like of shape (n_samples,), default=None
New target on which to compute the metric. By default, we use the target provided when creating the report.
- average{“binary”, “macro”, “micro”, “weighted”, “samples”} or None, default=None
Used with multiclass problems. If
None
, the metrics for each class are returned. Otherwise, this determines the type of averaging performed on the data:“binary”: Only report results for the class specified by
pos_label
. This is applicable only if targets (y_{true,pred}
) are binary.“micro”: Calculate metrics globally by counting the total true positives, false negatives and false positives.
“macro”: Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account.
“weighted”: Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters ‘macro’ to account for label imbalance; it can result in an F-score that is not between precision and recall.
“samples”: Calculate metrics for each instance, and find their average (only meaningful for multilabel classification where this differs from
accuracy_score()
).
Note
If
pos_label
is specified andaverage
is None, then we report only the statistics of the positive class (i.e. equivalent toaverage="binary"
).- pos_labelint, float, bool or str, default=None
The positive class.
- Returns:
- pd.DataFrame
The precision score.
Examples
>>> from sklearn.datasets import load_breast_cancer >>> from sklearn.linear_model import LogisticRegression >>> from sklearn.model_selection import train_test_split >>> from skore import ComparisonReport, EstimatorReport >>> X, y = load_breast_cancer(return_X_y=True) >>> X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=42) >>> estimator_1 = LogisticRegression(max_iter=10000, random_state=42) >>> estimator_report_1 = EstimatorReport( ... estimator_1, ... X_train=X_train, ... y_train=y_train, ... X_test=X_test, ... y_test=y_test, ... ) >>> estimator_2 = LogisticRegression(max_iter=10000, random_state=43) >>> estimator_report_2 = EstimatorReport( ... estimator_2, ... X_train=X_train, ... y_train=y_train, ... X_test=X_test, ... y_test=y_test, ... ) >>> comparison_report = ComparisonReport( ... [estimator_report_1, estimator_report_2] ... ) >>> comparison_report.metrics.precision() Estimator LogisticRegression LogisticRegression Metric Label / Average Precision 0 0.96... 0.96... 1 0.96... 0.96...