Report for a cross-validation of an estimator#

The class CrossValidationReport performs cross-validation and provides a report to inspect and evaluate a scikit-learn estimator in an interactive way. The functionalities of the report are exposed through accessors.

CrossValidationReport(estimator, X[, y, ...])

Report for cross-validation results.

Methods

CrossValidationReport.help()

Display available methods using rich.

Metrics

CrossValidationReport.metrics

Accessor for metrics-related operations.

Metrics#

The metrics accessor helps you to evaluate the statistical performance of your estimator across cross-validation folds.

CrossValidationReport.metrics.help

Display available methods using rich.

CrossValidationReport.metrics.report_metrics

Report a set of metrics for our estimator.

CrossValidationReport.metrics.custom_metric

Compute a custom metric.

CrossValidationReport.metrics.accuracy

Compute the accuracy score.

CrossValidationReport.metrics.brier_score

Compute the Brier score.

CrossValidationReport.metrics.log_loss

Compute the log loss.

CrossValidationReport.metrics.precision

Compute the precision score.

CrossValidationReport.metrics.precision_recall

Plot the precision-recall curve.

CrossValidationReport.metrics.prediction_error

Plot the prediction error of a regression model.

CrossValidationReport.metrics.r2

Compute the R² score.

CrossValidationReport.metrics.recall

Compute the recall score.

CrossValidationReport.metrics.rmse

Compute the root mean squared error.

CrossValidationReport.metrics.roc

Plot the ROC curve.

CrossValidationReport.metrics.roc_auc

Compute the ROC AUC score.