CrossValidationReport.metrics.r2#
- CrossValidationReport.metrics.r2(*, data_source='test', multioutput='raw_values', aggregate=None)[source]#
Compute the R² score.
- Parameters:
- data_source{“test”, “train”}, default=”test”
The data source to use.
“test” : use the test set provided when creating the report.
“train” : use the train set provided when creating the report.
- multioutput{“raw_values”, “uniform_average”} or array-like of shape (n_outputs,), default=”raw_values”
Defines aggregating of multiple output values. Array-like value defines weights used to average errors. The other possible values are:
“raw_values”: Returns a full set of errors in case of multioutput input.
“uniform_average”: Errors of all outputs are averaged with uniform weight.
By default, no averaging is done.
- aggregate{“mean”, “std”} or list of such str, default=None
Function to aggregate the scores across the cross-validation splits.
- Returns:
- pd.DataFrame
The R² score.
Examples
>>> from sklearn.datasets import load_diabetes >>> from sklearn.linear_model import Ridge >>> from skore import CrossValidationReport >>> X, y = load_diabetes(return_X_y=True) >>> regressor = Ridge() >>> report = CrossValidationReport(regressor, X=X, y=y, cv_splitter=2) >>> report.metrics.r2() Ridge Split #0 Split #1 Metric R² 0.36... 0.39...